Transmission-matrix-based point-spread-function engineering through a complex medium
نویسندگان
چکیده
منابع مشابه
Programmable vector point-spread function engineering.
We use two nematic liquid crystal spatial light modulators (SLM's) to control the vector point spread function (VPSF) of a 1.3 numerical aperture (NA) microscope objective. This is achieved by controlling the polarization and relative phase of the electric field in the objective's pupil. We measure the resulting VPSF's for several different pupil field polarization states. By using single fluor...
متن کاملEngineering the point spread function of layered metamaterials
Layered metal-dielectric metamaterials have filtering properties both in the frequency domain and in the spatial frequency domain. Engineering their spatial filtering response is a way of designing structures with specific diffraction properties for such applications as sub-diffraction imaging, supercollimation, or optical signal processing at the nanoscale. In this paper we review the recent p...
متن کاملMulticolour localization microscopy by point-spread-function engineering.
Super-resolution microscopy has revolutionized cellular imaging in recent years1-4. Methods relying on sequential localization of single point emitters enable spatial tracking at ~10-40 nm resolution. Moreover, tracking and imaging in three dimensions is made possible by various techniques, including point-spread-function (PSF) engineering5-9 -namely, encoding the axial (z) position of a point ...
متن کاملPoint spread function engineering in confocal scanning microscopy
Confocal scanning microscopes are imaging systems that are mainly featured by their unique depth-discrimination capacity when imaging three-dimensional objects. Along the past few years, our research group has done several attempts to improve their axial resolution by means of the so-called point-spread-function (PSF) engineering method. That is, by designing diffractive elements that properly ...
متن کاملPoint spread function engineering for iris recognition system design.
Undersampling in the detector array degrades the performance of iris-recognition imaging systems. We find that an undersampling of 8 x 8 reduces the iris-recognition performance by nearly a factor of 4 (on CASIA iris database), as measured by the false rejection ratio (FRR) metric. We employ optical point spread function (PSF) engineering via a Zernike phase mask in conjunction with multiple su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optica
سال: 2017
ISSN: 2334-2536
DOI: 10.1364/optica.4.000054